Investigation of EscA as a chaperone for the Edwardsiella tarda type III secretion system putative translocon component EseC.

نویسندگان

  • Bo Wang
  • Zhao Lan Mo
  • Yun Xiang Mao
  • Yu Xia Zou
  • Peng Xiao
  • Jie Li
  • Jia Yin Yang
  • Xu Hong Ye
  • Ka Yin Leung
  • Pei Jun Zhang
چکیده

Edwardsiella tarda is an important Gram-negative enteric pathogen affecting both animals and humans. It possesses a type III secretion system (T3SS) essential for pathogenesis. EseB, EseC and EseD have been shown to form a translocon complex after secretion, while EscC functions as a T3SS chaperone for EseB and EseD. In this paper we identify EscA, a protein required for accumulation and proper secretion of another translocon component, EseC. The escA gene is located upstream of eseC and the EscA protein has the characteristics of T3SS chaperones. Cell fractionation experiments indicated that EscA is located in the cytoplasm and on the cytoplasmic membrane. Mutation with in-frame deletion of escA greatly decreased the secretion of EseC, while complementation of escA restored the wild-type secretion phenotype. The stabilization and accumulation of EseC in the cytoplasm were also affected in the absence of EscA. Mutation of escA did not affect the transcription of eseC but reduced the accumulation level of EseC as measured by using an EseC-LacZ fusion protein in Ed. tarda. Co-purification and co-immunoprecipitation studies demonstrated a specific interaction between EscA and EseC. Further analysis showed that residues 31-137 of EseC are required for EseC-EscA interaction. Mutation of EseC residues 31-137 reduced the secretion and accumulation of EseC in Ed. tarda. Finally, infection experiments showed that mutations of EscA and residues 31-137 of EseC increased the LD(50) by approximately 10-fold in blue gourami fish. These results indicated that EscA functions as a specific chaperone for EseC and contributes to the virulence of Ed. tarda.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of proteins secreted from a type III secretion system of Edwardsiella tarda and their roles in macrophage infection.

The Type III secretion system is essential for intracellular replication of Edwardsiella tarda in phagocytes of fish and mammals. We identified the secreted proteins of the Type III secretion system by comparing the wild-type strain and the Type III mutant mET1229. The wild-type strain secreted 55, 25, and 22 kDa proteins into the culture supernatant, whereas the Type III mutant did not. These ...

متن کامل

Role of type III secretion in Edwardsiella tarda virulence.

Edwardsiella tarda is a Gram-negative enteric bacterium affecting both animals and humans. Recently, a type III secretion system (TTSS) was found in Ed. tarda. Such systems are generally used by bacterial pathogens to deliver virulence factors into host cells to subvert normal cell functions. Genome-walking was performed from the eseB and esrB genes (homologues of Salmonella sseB and ssrB, resp...

متن کامل

FliC, a Flagellin Protein, Is Essential for the Growth and Virulence of Fish Pathogen Edwardsiella tarda

Edwardsiella tarda is a flagellated gram-negative bacterium which causes edwardsiellosis in fish. FliC, as a flagellar filament structural protein, is hypothesized to be involved in the pathogenesis of infection. In this study, a fliC in-frame deletion mutant of a virulent isolate of E. tarda was constructed through double crossover allelic exchange by means of the suicide vector pRE112, and it...

متن کامل

Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda.

Inorganic phosphate (P(i)) and iron are essential nutrients that are depleted by vertebrates as a protective mechanism against bacterial infection. This depletion, however, is sensed by some pathogens as a signal to turn on the expression of virulence genes. Here, we show that the PhoB-PhoR two-component system senses changes in P(i) concentration, whereas the ferric uptake regulator (Fur) sens...

متن کامل

A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding

The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tarda virulent protein P) is found to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 155 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2009